

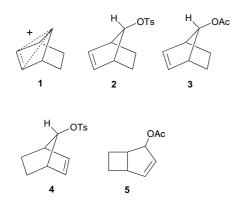
Available online at www.sciencedirect.com

Tetrahedron Letters 45 (2004) 5321-5324

Tetrahedron Letters

Unexpected interconnection of the 7-norbornenyl and 3-nortricyclcyl/5-norbornen-2-yl cations

Robert A. Moss* and Xiaolin Fu

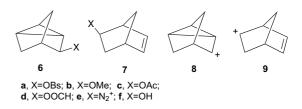

Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08903, USA

Received 26 March 2004; accepted 19 April 2004

Abstract—Fragmentation of *syn*-7-norbornenyloxychlorocarbene provides products derived from both 7-norbornenyl cationchloride anion pairs and from 3-nortricyclyl/2-norbornen-5-yl cation-chloride anion pairs. A 5,7-hydride shift within the 7-norbornenyl cation is proposed to interconnect the two cation systems.

© 2004 Elsevier Ltd. All rights reserved.

The 7-norbornenyl cation 1 is the prime exemplar of homoallylic delocalization in organic chemistry.^{1,2} Its formation via acetolysis of the *anti*-tosylate 2 is $\sim 10^{11}$ times faster than the acetolysis of (saturated) 7-norbornyl tosylate, and the *anti*-7-norbornenyl acetate (3) reaction product is formed stereospecifically by the capture of 1.^{1,2}



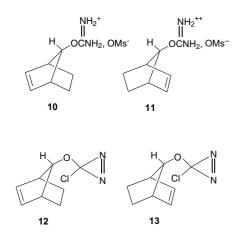
When the double bond is not in position to assist the tosylate's departure, as in the acetolysis of *syn*-tosylate, **4**, the reaction takes a very different course. Now, anchimeric assistance involves an *anti* σ bond, 1,2-carbon migration is concerted with tosylate loss, and the product is rearranged acetate **5**, formed from **4** 10⁷ times

0040-4039/\$ - see front matter $\odot 2004$ Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2004.04.134

more slowly than **3** is formed from **2**.³ Not only tosylate solvolyses, but also amine deaminations follow this scenario: the aqueous HNO₂/HOAc deamination of *anti*-7-norbornenylamine gives only **3** and *anti*-7-norbornenol, whereas deamination of *syn*-7-norbornenylamine affords only **5** and the corresponding alcohol (as an epimeric mixture).⁴

Apparently unrelated are the solvolyses of 3-nortricyclyl brosylate (**6a**) and *exo*-norbornenyl brosylate (**7a**) in MeOH, HOAc, or HCOOH, which afford mixtures of **6b** and **7b**, **6c** and **7c**, and **6d** and **7d**, containing >90% of nortricyclyl products.^{5,6} Similarly, diazonium ions **6e** and **7e** decompose in water to alcohols **6f** and **7f**, with **6f** strongly dominant.⁷ These results can be attributed to the intermediacy of the 3-nortricyclyl and 2-norbornen-5-yl cations, **8** and **9**, which can be regarded as canonical forms of a resonance hybrid whose structure (in super acid solution) closely resembles **8**.⁸

We have undertaken an extensive study of carbene fragmentation, as nonsolvolytic entry to notable carbocations of organic chemistry; cf., Eq. 1.⁹ Studies of the 2-norbornyl¹⁰ and 3-bicyclo[3.1.0]hexyl¹¹ cations, for


^{*} Corresponding author. Tel.: +1-732-445-2606; fax: +1-732-445-5312; e-mail: moss@rutchem.rutgers.edu

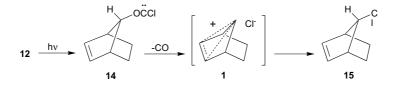
example, gave insight into the cation/anion/solvent equilibration of short-lived ion pairs.

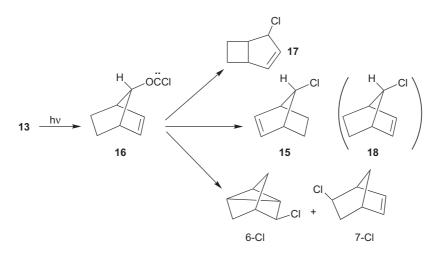
$$\operatorname{RO\ddot{C}Cl} \to [\operatorname{R^{+} OC Cl^{-}}] \to \operatorname{RCl} + \operatorname{CO}$$
(1)

Here, we report the existence of a 'wormhole' connecting the 7-norbornenyl and 3-nortricyclyl/2-norbornen-5yl cation manifolds. This unanticipated nexus can be accessed by the fragmentation of *syn*-7-norbornenyloxychlorocarbene.

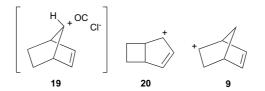
anti-7-Norbornenol was prepared in two steps from norbornadiene by literature methods,¹²⁻¹⁴ while syn-7norbornenol was obtained from norbornene in two steps by the method of Baird.¹⁵ These alcohols were converted to anti- and syn-isouronium salts 10 and 11 by reaction with cyanamide and methanesulfonic acid.¹⁶ The salts were obtained as oils admixed with urea. They were not purified, but directly converted to diazirines 12 and 13 by oxidation with NaOCl.¹⁷ Both diazirines were unstable on silica, but could be purified by rapid chromatography on short, neutral alumina columns, eluted with very cold pentane. The diazirines were characterized by ¹H and ¹³C NMR,¹⁸ as well as IR and UV spectroscopy. In particular, there were characteristic¹⁷ N=N bands in their IR (1540 cm^{-1}) and UV (349 nm), pentane) spectra.

Photolysis of *anti*-diazirine **12** in CDCl₃ at 350 nm and 25 °C gave *anti*-7-norbornenyl chloride (**15**), most reasonably understood as arising via the fragmentation of carbene **14** to (ion pair) **1**, followed by chloride capture; see Scheme 1. The identity of **15** followed from its NMR spectra, and GC and NMR spiking experiments with authentic **15** prepared from *anti*-7-norbornenol and SOCl₂ in ether.¹⁹


Conversion of diazirine 12 to chloride 15 via carbene 14 was quite clean; about 3% of dichloride (ROCHCl₂) and 4% of formate (ROOCH), trapping products²⁰ of 14 by HCl or H₂O, respectively, accompanied 93% of 15. Photolyses of 12 in cyclohexane- d_{12} or CD₃CN gave 79% or 86% of 15, respectively, with the balance as dichloride and formate.


Fragmentation of 14 in the presence of excess $Bu_4N^+Cl^-$ in dichloroethane led only to *anti*-chloride 15; there was no evidence for the formation of the *syn*-chloride isomer by a S_N2 reaction²¹ at C-7. Thus, the fragmentation of *anti*-carbene 14 to chloride 15 is stereospecific, joining the acetolysis of tosylate 2,¹ and the deamination of *anti*-7-norbornenylamine,⁴ as reactions, which funnel through the delocalized 7-norbornenyl cation, 1.

The photolysis of *syn*-diazirine **13** in CDCl₃, however, is considerably more complicated, affording 4-chlorobicyclo[3.2.0]hept-2-ene (**17**), *anti*-7-chloronorbornene (**15**), 3-chloronortricyclene (**6-Cl**), and *exo*-5-chloro-2-norbornene (**7-Cl**); cf., Scheme 2. Not shown in the scheme are the dichloride (ROCHCl₂) and formate (ROOCH) trapping products of carbene **16**, which account for \sim 22% and \sim 4%, respectively, of the product mixture.²²


Product identities were established by GC-MS and ¹H and ¹³C NMR comparisons (including spiking experiments) with authentic materials. Chloride 17^{23} was prepared by reaction of anti-bicyclo[3.2.0]hept-2-en-4ol³ with SOCl₂ and pyridine in ether. anti-7-Chloronorbornene (15) is described above.¹⁹ Nortricyclcyl chloride (6-Cl) was prepared from nortricyclanol²⁴ and SOCl₂ in THF.²⁵ exo-5-Chloro-2-norbornene (7-Cl) was made from exo-5-norbornen-2-ol²⁶ and SOCl₂ in pyridine/ether.²⁷ Importantly, the key vinyl and C-Cl regions of the ¹H and ¹³C NMR spectra of the product mixtures from carbene 16 did not show signals (<5%) that could be attributed to *svn*-7-chloronorbornene (18). By capillary GC, the normalized product distribution in Scheme 2 was 17 (74%), 15 (3.6%), 6-Cl (8.6%) and 7-Cl (13.7%).

In that bicyclic chloride **17** is the major product from *syn*-oxychlorocarbene **16**, the fragmentation reaction follows the pattern established in the acetolysis of *syn*-tosylate **4**,³ and the deamination of *syn*-7-aminonorbornene:⁴ 1,2-alkyl migration *anti* to the leaving group is the dominant process in each case. In contrast to the earlier reactions, however, 1,2-alkyl migration (to **17**) *is not the exclusive process*, in the fragmentation of **16**: appreciable quantities of nortricylclyl chloride **6-Cl** and 5-norbornenyl chloride **7-Cl** are also formed.

Scheme 2.

This unprecedented outcome must, in part, reflect the low activation energy required for the fragmentation of carbene **16**. Laser flash photolysis²¹ of diazirines **12** and **13** in dichloroethane, with pyridine ylide visualization of the carbene,²⁸ gave²⁰ $k_{\text{frag}}(\mathbf{14}) = 1.7(\pm 0.3) \times 10^5 \text{ s}^{-1}$ and $k_{\text{frag}}(\mathbf{16}) = 1.5 \pm 0.2 \times 10^6 \text{ s}^{-1}$. For *syn*-carbene **16**, an Arrhenius study from -30 to 30 °C gave $E_a = 7.4 \text{ kcal mol}^{-1}$.²⁹

The low E_a required for the fragmentation of **16** obviates the need for extensive anchimeric assistance from a migrating ethano carbon, as occurs in the acetolysis of **4**. The carbene fragmentation is 'disconnected' from alkyl group migration, and other processes can compete. A similar disconnection occurs in the fragmentation of 3-bicyclo[3.1.0]hexyloxychlorocarbene.¹¹

How does carbene **16** access the products of Scheme 2? We suggest that fragmentation of **16** initially affords short-lived ion pair **19**, from which 1,2-ethano migration affords the bicyclo[3.2.0]hept-2-ene-4-yl cation, **20**, and then chloride **17** by collapse with a chloride counterion. A small quantity of **19** evidently also undergoes intraion pair reorganization, ultimately leading to *anti*-7norbornenyl chloride, **15**.

Further in Scheme 2, we note that the simplest connection between the 7-norbornenyl cation of 19 and the 2-norbornen-5-yl cation (9) involves a 5,7-hydride shift, which would directly transform 19 into 9. Chloride collapse with 9 then affords 7-Cl, while 8 also provides nortricyclyl chloride, 6-Cl. The postulated hydride shift that converts 19 to 8/9 must compete with the ethano shift that transforms 19 to 20. We suspect that the chloride anion of 19 plays an important part in the $19 \rightarrow 9$ conversion; otherwise we would also expect the

deamination of *syn*-7-aminonorbornene to give nortricyclyl and 5-norbornenyl products (which it does not).³⁰

In summary, fragmentation of *syn*-7-norbornenyloxychlorocarbene provides products derived from both 7-norbornenyl cation-chloride anion pairs and (surprisingly) from 3-nortricyclyl/2-norbornen-5-yl cationchloride anion pairs. A 5,7-hydride shift within the 7norbornenyl cation is postulated to interconnect the two cation systems.

Acknowledgements

We are grateful to Professor Ronald R. Sauers for helpful discussions and to the National Science Foundation for financial support.

References and notes

- (a) Winstein, S.; Shavatsky, M.; Norton, C.; Woodward, R. B. J. Am. Chem. Soc. 1955, 77, 4183; (b) Winstein, S.; Shavatsky, M. J. Am. Chem. Soc. 1956, 78, 592.
- For a discussion and leading references, see: March, J. Advanced Organic Chemistry; 4th ed.; Wiley: New York, 1992, p 314f.
- Winstein, S.; Stafford, E. T. J. Am. Chem. Soc. 1957, 79, 505.
- 4. Tanida, H.; Tsuji, T.; Irie, T. J. Org. Chem. 1966, 31, 3941.
- Cristol, S. J.; Seifert, W. K.; Johnson, D. W.; Jurale, J. B. J. Am. Chem. Soc. 1962, 84, 3918.
- Roberts, J. D.; Lee, C. C.; Saunders, W. H., Jr. J. Am. Chem. Soc. 1955, 77, 3034.
- Kirmse, W.; Knöpfel, N. J. Am. Chem. Soc. 1976, 98, 4672.

- 8. Jarret, R. M.; Veniero, J. C.; Byrne, T. P.; Saunders, M.; Laidig, K. E. J. Am. Chem. Soc. 1988, 110, 8287, and references cited therein.
- 9. Moss, R. A. Acc. Chem. Res. 1999, 32, 969.
- Moss, R. A.; Zheng, F.; Sauers, R. R.; Toscano, J. P. J. Am. Chem. Soc. 2001, 123, 8109.
- 11. Moss, R. A.; Fu, X. Org. Lett. 2004, 6, 981.
- 12. Weiss, R. G.; Snyder, E. I. J. Org. Chem. 1970, 35, 1627.
- 13. Tanida, H.; Tsuji, T. J. Org. Chem. 1964, 29, 849.
- 14. Franzus, B.; Snyder, E. I. J. Am. Chem. Soc. 1965, 87, 3423.
- 15. Baird, W. C., Jr. J. Org. Chem. 1966, 31, 2411.
- Moss, R. A.; Kaczmarczyk, G. M.; Johnson, L. A. Synth. Commun. 2000, 30, 3233.
- 17. Graham, W. H. J. Am. Chem. Soc. 1965, 87, 4396.
- Diazirine 12: ¹H NMR (δ, CDCl₃): 6.01 (q, J = 4 Hz, 2H, vinyl H), 3.92 (s, 1H, H–C–O), 2.82 (m, 2H, bridgehead H), 1.57 and 1.00 (m's, 2H each, C-5 and C-6 H). ¹³C NMR (δ, CDCl₃): 133.6, 86.3, 68.2, 43.8, 21.3. Diazirine 13: ¹H NMR (δ, CDCl₃): 5.93 (m, 2H, vinyl H), 4.10 (s, 1H, H–C–O), 3.03 (m, 2H, bridgehead H), 1.77 and 1.04 (m's, 2H each, C-5 and C-6 H). ¹³C NMR (δ, CDCl₃): 131.0, 92.0, 68.2, 44.7, 21.6. The diazirine carbon resonances at 68.2 ppm are very weak.
- Tanida, H.; Hata, Y. J. Org. Chem. 1965, 30, 977, Key NMR resonances (δ, CDCl₃): ¹H: 6.07 (dd, J = 2.0, 1.2 Hz, 2H, vinyl H), 3.70 (d, J = 1.2 Hz, 1H, H–C–Cl), 2.75 (m, 2H, bridgehead H). ¹³C: 135.3 (vinyl C), 68.1 (C– Cl), 47.0 (C-l, C-4), 21.3 (C-5, C-6).

- Moss, R. A.; Ge, C.-S.; Maksimovic, L. J. Am. Chem. Soc. 1996, 118, 9792. Traces of water are responsible for carbene trapping, with the ultimate formation of formates.
- Moss, R. A.; Johnson, L. A.; Merrer, D. C.; Lee, G. E., Jr. J. Am. Chem. Soc. 1999, 121, 5940.
- 22. The dichloride is suppressed when the reaction is run in the presence of pyridine, which scavenges HCl.
- Key resonances (δ, CDCl₃): ¹H NMR: 6.10, 5.97 (m, 2H, vinyl H), 4.74 (m, 1H, *H*–Cl–Cl). ¹³C NMR: 139.4, 131.2 (vinyl C), 69.8 (*C*–Cl).
- Brown, H. C.; Peters, E. N. J. Am. Chem. Soc. 1975, 97, 1927.
- Trecker, D. J.; Henry, J. P. J. Am. Chem. Soc. 1963, 85, 3204, Key resonances (δ, CDCl₃): ¹H NMR: 3.89 (s, 1H, H–C–Cl). ¹³C NMR: 65.8 (C–Cl).
- Posner, G. H.; Ting, J.-S.; Lentz, C. M. *Tetrahedron* 1976, 32, 2281.
- 27. For ¹H NMR, see: Steele, W. C.; Jennings, B. H.; Botyos, G. L.; Dudek, G. O. *J. Org. Chem.* **1965**, *30*, 2886, Key ¹³C NMR resonances (δ, CDCl₃): 140.8, 133.7 (vinyl C), 58.9 (C–Cl).
- Jackson, J. E.; Soundararajan, N.; Platz, M. S.; Liu, M. T. H. J. Am. Chem. Soc. 1988, 110, 5595.
- 29. We were unable to complete an Arrhenius study of carbene 14 due to weak carbene–pyridine ylide signals.
- 30. E_a for the decomposition of the *syn*-7-norbornenyldiazonium ion is likely to be quite low.